HKI : Himpunan Kimia Indonesia, Wadah menyatukan para Kimiawan di segala Bidang
Peran Kimiawan tak bisa dielakkan dari pembangunan indonesia dewasa ini. para praktisi industri mau tak mau harus memakai jasa para kimiawan untuk tenaga laboratorium ataupun lainnya. HKI merupakan wadah yang tepat guna menyatukan segala pemikiran para scientist-scientist kimia di seluruh Indonesia
Trip To Jakarta
First Coordination meeting of Indofood Asahi QA Team. For 2 years, finally i landed again in Soekarno Hatta International Airport
My First Book - Panzerkorps (1939 - 1945)
Finally, our book project in a recent year has finished. Thanks to nulisbuku.com for published it. Glad to see it and face the future book project
Indofood CBP Asahi QA Team
With our fellow QA team of Indofood CBP Asahi Beverage Division at Indofood Tower
#TipsAndroid, our #2 book
Our #2 book published by nulisbuku.com, thanks for published our book 2 times. i'm confident my #3 books is'nt indie book again.
Thursday 7 May 2015
Global Warming
Dampak pemanasan global selain menyebabkan terjadinya peningkatan suhu udara juga mengakibatkan mencairnya es dan salju, meningkatkan penguapan air permukaan lebih besar lagi, sehingga meningkatkan terjadinya awan, frekuensi dan intensitas hujan. Hal ini menimbulkan perubahan iklim global, sementara mahluk hidup di bumi sangat bergantung terhadap iklim. Perubahan iklim akan berdampak negatif pada ketersediaan sumber air, sumberdaya pesisir, kesehatan, pertanian kehutanan, energi dan transportasi. Jumlah dan kualitas air minum, ketersediaan air untuk irigasi, industri, pembangkitan listrik, perikanan dan kesehatan secara signifikan dipengaruhi oleh intensitas hujan dan tingkat evaporasi. Peningkatan curah hujan dapat menimbulkan terjadinya banjir dan memberi tekanan pada daerah aliran sungai.
Pada tahun 2100 para ahli telah memprakirakan bila lapisan es di kutub terus mengalami pencairan karena peningkatan
suhu global, maka permukaan air laut akan meningkat dapat mencapai hingga 50 cm. Hal ini akan menyebabkan lebih dari 5000 mil2 lahan produktif di permukaan bumi akan terendam air. Peningkatan suhu udara dalam jangka panjang akan menyebabkan terjadinya peningkatan kematian yang disebabkan heat stress, selain itu juga akan memacu perkembangan berbagai jenis penyakit di suatu kawasan. Perubahan suhu udara dan pola hujan dapat meningkatkan potensi terjadinya kebakaran hutan dan terganggunya/ punahnya kehidupan berbagai jenis serangga, dan akan meningkatkan kebutuhan akan alat pendingin, serta transportasi air akan dipengaruhi oleh banjir dan tingkat permukaan air.
EMISI GAS RUMAH KACA
Pembangkitan listrik dan transportasi merupakan kontribusi utama emisi GRK, saat ini emisi GRK dari sektor pembangkitan listrik diprakirakan mencapai 1/3 emisi global. Emisi GRK sisanya adalah
dari kegiatan lainnya yang dilakukan manusia, di antaranya adalah dari berbagai kegiatan industri, pembakaran biomas, penggundulan hutan, pembukaan lahan untuk pembangunan dan berbagai kegiatan lainnya. Badan tenaga atom internasional (International Atomic Energy Agency,
IAEA) pada tahun 1994 - 1998 telah melakukan pengkajian nilai faktor emisi GRK dari tiap jenis rantai pembangkitan listrik. Jenis rantai pembangkitan listrik yang menjadi objek studi meliputi bahan bakar (BB) lignite, batu-bara, minyak bumi, gas alam, tenaga nuklir, biomas, tenaga air, tenaga angin dan tenaga surya berdasarkan teknologi tahun 1990 dan teknologi yang diharapkan beroperasi pada era 2005 - 2020. Dalam studi yang dimaksud dengan total emisi GRK untuk BB fosil adalah jumlah emisi dari cerobong selama pembakaran dan pelepasan (release) yang terjadi selama kegiatan hulu hingga hilir (seluruh rantai produksi).
Untuk pembangkitan listrik dengan tenaga air, tenaga surya dan tenaga angin ukuran dan jenis teknlogi merupakan faktor kunci dalam analisis. Analisis beban terhadap lingkungan hidup, aliran masa dan energi pada tiap tahapan posedur dihitung dengan menggunakan perangkat lunak Life Cycle Assessment (LCA). Dalam penggunaan metode LCA ataupun Process Chain Analysis (PCA) dilengkapi dengan Input Output Analysis (IOA). Pembangkitan
listrik dengan tenaga nuklir dan BB terbarukan tidak ada emisi GRK pada saat produksi, emisi GRK hanya terjadi pada saat penambangan dan transportasi dan pembangunan instalasi pembangkit listrik (IPL), dekomisioning dan pabrikasi peralatan. Dalam membandingkan seluruh tahapan (cradel to grave) diperhatikan beban terhadap lingkungan untuk berbagai jenis BB untuk teknologi yang berbeda dalam pembangkitan listrik. Dalam pembangkitan listrik dengan tenaga angin, tenaga surya dan tenaga air, analisis emisi dihitung untuk sistem primer dan sistem back-up secara terpisah.
Total emisi GRK untuk BB fosil adalah jumlah emisi dari lepasan cerobong selama pembakaran dan dari kegiatan hulu hingga hilir (penambangan, pengolahan, transportasi). Khusus emisi GRK dari
pembangunan IPL, dekomisioning dan kontribusi daya dari IPL ke jaringan distribusi relatif kecil hanya 1 % dari total, sehingga diabaikan.
Teknologi pembangkitan listrik dari tenaga air, surya dan angin, ukuran dan jenis merupakan faktor kunci dalam analisis. Pertimbangan mengenai lokasi geografis dan
regulasi lokal untuk pembangunan IPL sangat kuat mempengaruhi laju emisi GRK.
Hasil pegkajian IAEA menunjukkan bahwa teknologi untuk BB fosil mempunyai faktor emisi GRK yang tertinggi, gas alam separuh dari batu-bara atau lignite dan 2/3 dari BB minyak. Tenaga nuklir dan air mempunyai faktor emisi yang terendah dalam emisi GRK, 50 - 100 kali lebih kecil dari batu-bara, tenaga surya sedikit lebih tinggi dari tenaga nuklir.
Dibalik Cerita Penemuan Kimia
Joseph Priestley : Penemu Gas Ketawa
Istilah gas ketawa dalam kehidupan sehari-hari mungkin belum populer, setidaknya untuk kalangan awam. Namun, jika ada yang menyebutkan istilah NOS, para pencinta balapan tentu langsung mengenalnya. Tidak heran, karena NOS memang digunakan sebagai bahan tambahan agar laju kendaraan semakin cepat. NOS adalah nama lain dari gas ketawa, suatu zat kimia dengan nama kimia dinitrogen monoksida atau nitrous oxide dan mempunyai rumus kimia N2O. Selain digunakan di ajang balap-membalap, gas ketawa juga digunakan di bidang anestesi dan penerbangan luar angkasa. Di balik kegunaan gas ketawa, terselip seorang tokoh yang pertama kali menemukan gas tersebut. Ia adalah Joseph Priestley. Penemuan gas ketawa ini bermula dari kegiatan Priestley merangkai alat yang mengandung merkuri. Alat ini berfungsi agar gas-gas yang dikumpulkan di dalam alat tersebut tidak hilang. Gas-gas yang telah terkumpul, lalu dipanaskan dengan menggunakan kaca pembesar yang disinari sinar matahari. Gas ketawa merupakan salah satu penemuannya yang pertama dengan alat rekaannya tersebut pada tahun 1772.
Lahir di sebuah daerah dekat Leeds, Inggris pada tanggal 13 Maret 1733, Priestley sebetulnya tidak pernah belajar sains secara formal. Namun, Priestley merupakan orang yang selalu gigih dalam belajar sesuatu. Sikapnya yang toleran dan liberal menjadi salah satu modal kesuksesannya. Modal itu termasuk cara berpikirnya yang selalu ingin tahu dan tidak pernah puas atas sebuah karya. Hal ini terbukti dari tahun-tahun kehidupannya yang tidak pernah sepi dari prestasi, termasuk beberapa tulisan yang dihasilkan dari cabang ilmu yang berbeda-beda.
Pada usia 28 tahun, Priestley yang saat itu tertarik pada bahasa, menghasilkan tulisan yang berjudul The Rudiments of English Grammar (Dasar-dasar Tatabahasa Inggris). Tulisan tersebut merupakan penjelasan Priestley mengenai tata bahasa Inggris, seperti yang dipelajari saat ini.
Mulai Tertarik Sains
Ketertarikannya di bidang sains berawal dari perkenalannya dengan Benjamin Franklin setahun sesudah Priestley dianugerahi gelar doktor bidang Hukum karena tulisannya yang berjudul Chart of Biography pada tahun 1765. Benjamin Franklin, yang saat itu memang seorang ilmuwan yang mendalami listrik, telah membangkitkan minat Priestley di bidang sains.
Kepribadian Priestley yang dinamis terbukti kembali. Setahun sudah persahabatannya dengan Franklin berjalan dan itu merupakan persahabatan yang tidak sia-sia karena Priestley kembali menghasilkan karya tulis. Kali ini dia menerbitkan The History of Electricity. Selain menghasilkan karya tulis, Priestley pun menemukan bahwa karbon merupakan penghantar listrik yang baik.
Menemukan Minuman Soda
Pada tanggal 23 Juni 1762, Priestley menikahi Mary Wilkinson dari Wrexham. Hanya 5 tahun sepasang suami-istri itu tinggal di Wrexham. Pada September 1767 mereka harus kembali ke Leeds karena kondisi keuangan dan kondisi kesehatan istrinya. Di Leeds, keproduktifan Priestley dalam menulis terus mengalir. Ia menerbitkan 2 buku politik, Essay on the First Principles of Government pada 1768 dan The Present State of Liberty in Great Britain and her Colonies pada 1769. Pada tahun yang sama, Priestley juga menulis buku Dr. Blackstone’s Commentaries, buku yang berisi pembelaannya terhadap hak-hak konstitusional para pembelot melawan William Blackstone, penguasa saat itu.
Tahukah Anda siapa yang menemukan minuman soda? Tidak banyak yang mengetahui bahwa Joseph Priestleylah sang penemu minuman soda. Berawal dari tempat pembuatan bir yang terletak di seberang rumahnya, Priestley tergelitik oleh udara di permukaan gandum fermentasi yang terasa lain. Dia pun mengamati sifat udara tersebut yang dapat memadamkan api sisa pembakaran kepingan kayu. Priestley menyebut gas tersebut dengan nama ‘gas pasti’ (fixed gas). Terdorong rasa ingin tahunya yang besar, Priestley memproduksi sendiri ‘gas pasti’ tersebut di rumahnya, lalu melarutkannya dalam air hingga diperoleh air yang rasanya tajam. Itulah air berkarbonasi, yang kini sangat populer sebagai minuman bersoda! Beliau dengan antusias menawarkan air hasil percobaannya ini sebagai minuman segar kepada teman-temannya.
Menemukan Gas Ketawa
Gas ketawa adalah penemuan Priestley lainnya. Boleh dibilang, gas ketawa adalah salah satu penemuan yang ditemukan Priestley secara tidak sengaja. Ketertarikannya yang semakin menjadi terhadap sains mendorongnya merancang sebuah alat yang mengandung merkuri. Alat tersebut dipanaskan dengan bantuan sinar matahari yang dilewatkan pada kaca pembesar sehingga dihasilkan sinar fokus berenergi tinggi yang mampu menghasilkan panas. Pemanasan tersebut menghasilkan gas-gas yang beraneka, termasuk di antaranya gas dinitrogen monoksida atau gas ketawa. Tidak perlu waktu lama hingga orang-orang mengenal penemuannya tersebut, mengingat gas ini menyebabkan siapapun yang menghirupnya akan tertawa terbahak-bahak.
Diusir Gara-gara Revolusi Perancis
Priestley nampaknya ditakdirkan untuk menjadi raja penemu gas. Seolah tidak puas dengan penemuan gas bersoda dan gas ketawa, beliau menemukan oksigen pada tahun 1774. Ia tidak menyadari bahwa penemuan ini sebenarnya telah ditemukan oleh Carl Wilhelm Scheele sebelum tahun 1773. Penemuan Priestley ini, kemudian dipublikasikan pada 1775 dalam bukunya Experiments and Observations on Different Kinds of Air. Adapun Scheele menerbitkan bukunya yang berjudul Chemical Treatise on Air dan Fire pada 1777. Keduanya tidak menyadari bahwa oksigen merupakan unsur kimia. Priestley menamai gas yang ditemukannya sebagai ‘de-phlogisticated air’ sesuai dengan petunjuk teori phlogiston yang saat itu dipercaya. Dalam eksperimennya tersebut, Priestley mampu mengidentifikasi delapan gas sekaligus menyangkal pendapat pada saat itu yang menyatakan bahwa hanya ada satu jenis udara.
Pada 1780 beliau menuju Birmingham dan ditunjuk menjadi pendeta junior. Nama Priestley semakin tersohor setelah menjadi anggota Lunar Society. Namun, kekagumannya pada Revolusi Prancis membuatnya terusir ke luar kota.
Untuk mengenang jasa-jasanya, masyarakat mendirikan tugu Priestley, di antaranya tugu bernama Moonstones dan sebuah tugu yang lebih tradisional di Chamberlain Square di tengah-tengah kota. Tugu paling akhir adalah sebuah tugu yang terbuat dari batu marmer yang aslinya dibuat oleh A. W. Williamson pada 1874. Kemudian, pada tahun 1951 seluruh marmer dilapisi dengan perunggu.
Ketiga putranya bermigrasi menuju Amerika Serikat pada 1793. Priestley mengikuti jejak ketiga putranya mencari kebebasan beragama dan berpolitik. Meskipun tidak pernah mengubah kewarganegaraannya, beliau menetap di Pennsylvania hingga akhir hayatnya.
Chernobyl, Bencana Nuklir Terbesar sepanjang Sejarah
Sejarah pula yang mencatat hancurnya dua kota di Jepang, Hiroshima dan Nagasaki oleh senjata pemusnah massal bernama bom atom. Di tahun-tahun berikutnya, pengembangan dari senjata tersebut menimbulkan hantu yang lebih menakutkan, nuklir.
Tapi jangan salah, nuklir bukan saja berbahaya di saat perang, juga momok menakutkan di waktu damai. Alih-alih sumber energi, ternyata bahaya radiasi pun menghantui manusia dari waktu ke waktu. Suatu konsekuensi yang mesti ditelan, buah dari keinginan manusia untuk lebih berkuasa dibanding sesamanya.
Setidaknya, catatan kelam pernah dialami Ukraina, manakala terjadi kebakaran, ledakan, serta kebocoran di Pembangkit Listrik Tenaga Nuklir Chernobyl. Tragedi Chernobyl, bukan cuma berimbas buruk pada manusia yang tinggal di wilayah Belarus, Rusia dan Ukraina saja, melainkan seluruh Eropa.
Masalah Beberapa Abad
Pada 26 April 1986, penduduk Kiev dikejutkan oleh sebuah ledakan besar. Ledakan ini memuntahkan potongan inti reaktor sampai 1500 meter ke langit dan menebarkan awan beracun ke 70 persen daratan eropa. Radioaktivitas total ledakan Chernobyl, menurut WHO, ditaksir 200 kali radiasi bom atom Hiroshima dan Nagasaki.
Kelompok pecinta lingkungan Greenpeace bahkan menaksir, 160 ribu kilometer persegi tanah terkontaminasi bahan radioaktif. Sementara Mantan Sekretaris Jenderal PBB Boutros Boutros Ghali mengatakan, "Kecelakaan Chernobyl tidak dapat dianggap sebagai masalah beberapa abad saja, tapi juga masalah kekinian karena banyak program sosial, ekonomi, dan lingkungan yang harus didefinisikan kembali."
Yang pasti, fakta menunjukkan lima juta orang di sekitar Chernobyl terkena radiasi. Sekitar 650 ribu diantaranya adalah para buruh yang bertugas membersihkan muntahan ledakan Chernobyl. Dan sekitar 200 ribu dari 650 buruh tersebut, merupakan kelompok kunci beresiko tinggi terpapar radiasi. Mereka berada dalam zona penyingkiran, atau sekitar 30 kilometer dari pusat ledakan Chernobyl.
Sepuluh tahun kemudian tercatat, 60 ribu buruh pembersih yang kebanyakan berusia 30 tahunan, meninggal dunia. Sementara 30 persen laki-laki pekerja pembersih yang masih hidup menderita impotensi. Yang menjadi masalah, sebagian besar buruh ini ditolak dalam kehidupan sosialnya. Penyebabnya, mereka dicurigai akan menularkan radiasi dari reaktor PLTN kepada orang-orang di sekitarnya. Hal inilah yang memicu mereka meninggal akibat kecanduan alkohol, mati dalam kemiskinan, serta bunuh diri.
Dokter spesialis penyakit -yang berkaitan dengan tragedi Chernobyl- Natalya Preobrashenskaya mengatakan, selain pekerja pembersih muntahan radioaktif, jutaan anak-anak yang tetap hidup pasca ledakan merupakan kelompok berisiko tinggi terpapar radiasi. Preobrashenskaya bahkan menyatakan, jutaan anak-anak yang lahir di masa mendatang juga akan terkena cemaran radiasi Chernobyl, sesuai prilaku radioaktif yang dipakai sebagai bahan bakar PLTN, jutaan tahun!
Penyakit akibat Radiasi
Apa saja penyakit yang timbul setelah tragedi Chernobyl? Boutros Boutros Ghali menyebutkan, lebih dari 300 anak-anak terdiagnosis kanker gondok, kesuburan pria wanita menurun drastis, dan angka kematian naik.
Secara lebih terperinci, 60 persen anak-anak Ukraina atau sejuta orang lebih menderita kanker gondok, sepuluh persen lainnya yang masih duduk di bangku SD mengalami rusak mental, serta sebagian besar anak-anak Ukraina menderita penyakit tulang. Preobrashenskaya mengatakan, kekebalan tubuh anak-anak Ukraina pun menurun drastis sehingga disebut pula AIDS-Chernobyl.
Penelitian Preobrashenskaya senada dengan penelitian WHO. Badan Kesehatan Dunia itu menyatakan, setelah peristiwa Chernobyl terjadi peningkatan kasus kanker gondok anak, 100 kali dibanding prakecelakaan Chernobyl. Kenyataan lainnya, penduduk Kiev banyak yang terkena kanker paru-paru dan jantung. Dan banyak dokter memperkirakan, dalam waktu mendatang, epidemi berbagai penyakit menular akan meningkat di sekitar lokasi kejadian, dan di kalangan mereka yang terpapar radiasi nuklir.
Tragisnya, terapi kimia normal tidak efektif (mempan-red) pada penderita kanker akibat radiasi Chernobyl. Menurut Dr Andrei Butenko dari rumah sakit nomor satu di Kiev, dipastikan kanker gondok ganas yang menimpa anak-anak Ukraina akibat kontaminasi isotop iodium-131, isotop iodium yang radioaktif. Imbasnya, dengan terapi kimia di atas normal, kepala para pasien membotak dan wajah mereka bengkak-bengkak.
Horor yang kurang lebih sama dialami anak-anak Yunani. Anak-anak di negara tersebut berisiko terkena kanker dua hingga tiga kali akibat Chernobyl. Bahkan, anak-anak Yunani yang terpapar radioaktif ketika masih dalam kandungan ibunya berisiko menderita leukimia 2,6 kali lipat dibanding anak-anak lainnya. Hal ini karena adanya mutasi gen yang diberi nama 11q23.
Mutasi Gen
Mutasi gen merupakan imbas lain dari kejamnya radiasi Chernobyl. Mutasi gen 11q23 ini merupakan salah satu contoh nyata yang berhubungan dengan leukimia pada bayi. "Temuan ini merupakan bukti langsung pertama, bahwa radiasi ternyata menimbulkan mutasi pada anak manusia," ulas Sir Alec Jeffreys, ahli genetika dari Universitas Leicester.
Sir Alec melakukan penelitian pada 79 keluarga yang tinggal di Mogilev, Belarus, kawasan yang terkena radiasi tinggi, kurang lebih 300 kilometer dari Chernobyl. Ia meneliti anak-anak di keluarga tersebut yang lahir antara Februari-September 1994. Sebagai perbandingan, ia juga meneliti 105 anak-anak yang tidak terkena radiasi dari Inggris.
Hasilnya, anak-anak Mogilev terbukti mengalami mutasi gen dua kali lebih tinggi dibandingkan anak-anak di Inggris. Mutasi tersebut jelas diturunkan oleh orang tua mereka, dan secara permanen terkode pada gen anak-anak mereka. Artinya, mutasi tersebut juga akan diturunkan pada generasi-generasi selanjutnya.
Menurut Sir Alec, mutasi pada keluarga di Mogilev berhubungan dengan tingkatan kontaminasi permukaan oleh caesium 137, sebuah isotop radioaktif. Bahkan ahli genetika dari Akademi Sains Rusia Yuri Dubrova menyatakan, kelompoknya melihat lokasi genetik tertentu yang dikenal dengan nama minisatellites yang mengalami laju mutasi 1000 kali lipat lebih tinggi dibandingkan gen lainnya.
Sementara itu, Robert Baker dari Universitas Teknologi Texas meneliti dua kelompok tikus, yaitu kelompok yang tinggal satu kilometer dari reaktor, dan yang hidup 32 kilometer dari reaktor. Yang diteliti adalah mitokondria DNA (bagian sel yang diturunkan induk betina) pada anak tikus-tikus.
Hasilnya, walau tikus yang hidup dekat reaktor terlihat sehat dan subur, tapi mereka mengalami laju mutasi ratusan kali lebih tinggi dari kondisi normal. "Artinya, lingkungan yang tercemar akibat ledakan Chernobyl memberikan dampak nyata perubahan gen pada mahluk hidup sekitarnya," ulas Robert Baker.
Nada miris terdengar dari mulut peneliti Universitas Texas Austin David Hillis. "Kita sekarang tahu, dampak mutasi akibat kecelakaan nuklir mungkin lebih besar daripada yang diharapkan," komentar Hillis.
Biogas, Solusi mengatasi kelangkaan BBM
Apa itu biogas?
Pada prinsipnya proses produksi biogas, terjadi dua tahap yaitu penyiapan bahan baku dan proses penguraian anaerobik oleh mikroorganisme untuk menghasilkan gas metana.
Bahan Baku
- Limbah tanaman : tebu, rumput-rumputan, jagung, gandum, dan lain-lain,
- Limbah dan hasil produksi : minyak, bagas, penggilingan padi, limbah sagu,
- Hasil samping industri : tembakau, limbah pengolahan buah-buahan dan sayuran, dedak, kain dari tekstil, ampas tebu dari industri gula dan tapioka, limbah cair industri tahu,
- Limbah perairan : alga laut, tumbuh-tumbuhan air,
- Limbah peternakan : kotoran sapi, kotoran kerbau, kotoran kambing, kotoran unggas.
Tabel Rasio C/N untuk berbagai bahan organik